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Abstract 

By making use of the algebraic structure of the problem, we give a complete description of the 
topology and bifurcations of the invariant level sets for the Gelfand-Dikii system. 

R~suml 

En utilisant la structure alg6brique du probl~me, nous donnons une description complbte de la 
topologie et des bifurcations des vari6t6s invariantes du syst~me de Gelfand-Dikii. 
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1. Introduction 

The Geifand-Diki i  system [6] is a canonical Hamiltonian system defined by the Hamil- 

tonian 

H = _ q 4  q2 3q2q2 ql 2 - 2 + _ p 2  _ 2plP2. 

The change of  variables: 

qt = u + v, q2 = uv (1) 

separates the variables of  the corresponding Hamil ton-Jacobi  equation and allows us to find 

a second integral of  motion 

q2 2 F = q 3 q  2 +  lP2 + 2 q l p l p z - p 2 q z - z q l q  2 + p 2  

which proves the complete integrability of  the system [ 1 ]. 
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The aim of this paper is to give a topological description of the real level sets .A R 
( h , f )  : 

{H(q,  p)  = h, F(q ,  p) = f} .  According to the Liouville-Arnold theorem [1], each 

connected component  of  the generic level set .A R is either a torus, or a cylinder if the (h,f) 
flow is complete. We prove that, although the flow is not complete, the generic real level set 
.A R consists of  one or two cylinders. To prove our result we use the algebraic structure (h,f) 
of the problem and the Comessati  theory [2] as explained by Silhol [ 10]. 

We then describe the bifurcations of  the level sets .A~,f) when the parameter (h, f )  
passes through the bifurcation set. It turns out that the bifurcation set is just the discrim- 

inant locus of  the polynomial P(z)  = z 5 + hz + f .  As the connected components of 

the set .A~h,f ) are non-compact, Fomenko's  theory [5] is not applicable; then to study the 
bifurcations of  Liouville cylinders, we use once again the algebraic structure of  the prob- 

lem. 
The algebraic structure of  the problem was described earlier by Dimitrov [3].We also give 

an independent and shorter proof of  his result by making use of  a construction due to Jacobi 

and Mumford [81. Finally we note that the description of the topology of  the Gelfand-Dikii  

system announced in [3] is erroneous. 
The paper is organized as follows: First, we explain the algebraic structure of the problem 

(Section 2). In Section 3, we study the topology of general level set .A~h,f ). In Section 4, 

we find the topological bifurcations of  .A~h,f ) as the parameter (h, f )  passes through the 
bifurcation set B. 

2. Algebraic  structure 

Let A C be the complex affine algebraic variety defined by (h,f) 

.A~,f) m_ {(ql, q2, Pl ,  P2) E C 4 " H = h, F = f} .  

The Hamiltonian system corresponding to Gelfand-Dikii  Hamiltonian reads: 

ql = - 2 p 2 ,  Pl = 4q( - 6qlq2 + p2, 
q2 = - 2 p l  - 2qlp2,  /)2 = 2q2 - 3q 2. (2) 

On .A~h,f ) , c  according to (1), we obtain after some algebraic manipulations: 

u v P,/P  
Pl = , P2 = -- , (3) 

// - - U  U - - U  

where 

P(z)  = z 5 + hz + f .  

A straightforward computation shows that the Hamilton-Jacobi  equation separates in 
these (u, v)-coordinates and moreover (2) is equivalent to the Jacobi inversion problem: 

du dv u du v dv 
- - +  _ _ - 0 ,  - -  + _ _ - 2 d t .  (4) 
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In a similar way, one computes that the system: 

q'l = 2ql P2 + 2pl ,  ~/2 = 2p2q~ + 2ql Pl - 2p2q2, 

/31 = - 3 q 2 q 2  - 2qlP 2 -  2plP2 + 2q 2, /32 = - q ~  + p2 + 4 q l q 2  

associated with the second integral F is equivalent to: 

du dv udu  
_ _  + _ _  - - 2 d t ,  

Let F be the hyperelliptic curve defined by 

{w 2 = P(z)} 

v d v  
- -  + _ _  - 0 .  (5)  

and let (wl, w2) be a canonical basis of  holomorphic differentials on F : 

alz  + bl a2z + b2 
wl -- - -  dz, w2 - - -  dz. 

The Abel-Jacobi map is defined by 

( : F  <2) > Jac (F)  

PJ + ,°2  ~ wl + Wl; w 2 +  w2 , 

Po P0 P0 

where Jac (F)  is the Jacobi variety of  F, P0 is a fixed base point on F,  and F le) the 

symmetric product of  F .  

Solving the Jacobi inversion problem, we may express u + v and u v in terms of  genus-two 

hyperelliptic theta functions associated with F [3,4]. 

T h e o r e m  2.1  ( s ee  [3]) .  

(1) I f ( f ~ 4 )  4 + (h/5) 5 5~ 0 then the affine algebraic variety ¢4 C is a smooth complex (h,f) 
manifold isomorphic to Jac( F)  \ D o  where D ~  is a genus-two hyperelliptic curve. 

(2) The Hamiltonianflows defined by H and F on .A c extend biholomorphically toflows (h,f) 
on Jac( f ' )  which are straight-line motions. 

Proof. Consider the polynomial f ( z )  defined by 

f (z) = z 5 + hz + f 

and U, V, W the Jacobi polynomials [8] associated with F :  

U(z)  = ( z - u ) ( z -  v), V(z)  = 
~/ f (u)(z  -- v) - x/  f (v)(Z -- u) 

U-- l )  

f ( z )  - V(z )  2 
W(z )  -- 

U(z)  
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After some calculations we obtain: 

U(Z) = Z  2 - q l z + q 2 ,  V(Z) = - p 2 z + ( q l P 2 + P l ) ,  

W(z)  ---- z 3 + qlz  2 + (q~ - q2)z + (q~ - 2qlq2 - p22). 

Obviously, 

A c (h,f) ---- {(ql, q2, Pl,  P2) E C 4 " H = h; F = f}  
: {(U, V, W) E C 7 : f ( z )  - V(Z) 2 : U(z )W(z ) } .  

According to [8, Theorem 1.3, p.3.21], the latter is a smooth manifold if f ( z )  has no double 

zero. Since, for ( f / 4 )  4 + (h/5)  5 5~ 0, f ( z )  has no double zero, then ,A~h,f ) is smooth. 

Further.A~h,f)=Jac(F) \ Dc~ [8, Theorem 10.1, p.3.157], Doo is a translation of  the divisor 
tO and by Riemann's theorem: 

Doo : tO + k ----- ( ( r )  + ((Poo). 

We shall suppose that P0 = Poo, i.e. ((Poo) = 0. 

We notice that Doo is the image by the Abel-Jacobi map of  the set F C F (2) such that 

F---- {Poo + P : P ~ F } U { P  + r ( P )  : P E F}. 

r is the hyperelliptic involution on F given by 

r(z,  w) = (z, - w ) .  

It follows that 

Jac(F)  \ ( ( F )  ~ /-(2) \ F. (6) 

At last, condition (2) follows from Eqs.(4) and (5). The theorem is proved. [] 

3. Topological analysis 

In this section we consider (2) as a system of real differential equations and we give the 
topological type of  the real variety 

• A~h,f ) ~--- {(ql, q2, Pl,  P2) E ~4; H = h, F ----- f }  for (h, f )  E ff~2 \ B, 

where 

B = {(h, f )  E ~ 2  . (h/5)5 + ( f /4 )4  = 0}. 

Definition 3.1. Let M be a complex algebraic variety (M can be an algebraic curve). A real 
structure on M is defined by an anti-holomorphic involution S. We denote this structure by 

(M, S). The fixed points of  M under the action of  S are the real part of  M which will be 
denoted M (R). 
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Definition 3.2. Let (M, S) and (M',  S') be two real structures. We will say that these 

real structures are real isomorphic if there exists an isomorphism ~p : M ) M'  such that 
S = ~ o  - I  o S' o ~p. 

Notice that if (M, S) and (M', S') are real isomorphic then M(R) and M'(R)  are iso- 
morphic. 

We will use the following theorem due to Comessatti. 

Theorem 3.1. Let C be an algebraic curve of genus g. 

(a) I f  the real part of  C, C(R), has r connected components, then the real part Jac(C)(~) 

of the Jacobi variety of  C, Jac(C), is such that 

Jac(C))(R) -~ (~/7/) g × (7//2) r - I .  

(b) /fC(l~) : 9) and 

(1) if  g is even then 

Jac(C)(R) -~ (R/7/) g, 

(2) i f  g is odd then 

Jac(C)(R) -~ ([~/~-)g × (7//2). 

In other words, the number of  connected components of  Jac(C)(~) is 1 or 2 or 2 r-I . 

Proof See [2,10]. [] 

Let S be the involution on .,4 C defined by (h, f ) 

S : ,A~h,f ) ) ,,4 C (h,f) (7) 
(ql, q2, Pl,  P2) w-> (~/1, q-2, 1~1,/72). 

S coincides with the complex conjugation on C 4 and gives a real structure on ..4 c • (h,f)  

A~h, f) (~) -- AU • - -  ( h , f )  

= {(ql, q2, Pl,  P2) E ¢~h,f) " S(ql, q2, Pl, P2) -- (ql, q2, Pl ,  P2)}. (8) 

S induces an involution a on Jac(F) which gives a real structure on it such that: for 

(qJ, q2, Pl ,  P2) 6 -4 c parameterized by u, v as in (1) and (3) (h,f) 

P : u + v 6 F (2 ) ,  a ( ¢ ( e ) )  = ( (S (P) ) .  (9) 

Proposition 3.1. Denote by A~h,f ) the compacified of ,A~h,f ). Then: 

(1) (,A~h,f), S) and (Jac(F), a) are real isomorphic. 

(2) (a) If(h~5) 5 + ( f / 4 )  4 > 0 then 

(Jac( I ' ) ) (~)  -~ (R/7/) 2, 

i.e. one real torus. 
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(b) I f(h/5)  5 q- ( f / 4 )  4 < 0 then 

(Jac(F))(R)  ~ (IR/Z) 2 x (77/2), 

i.e. two real tori. 

Proof According to Theorem 2.1, ,A~h,f ) is a complex abelian surface isomorphic to 

Jac(F) and it has real points for all values of  (h, f ) ;  then ( A~h,f ), S) is real isomorphic to 

(Jac(F), a) [9, Theorem 3.11. 
The second part of  this theorem results from Theorem 3.1. Indeed: 

(a) If  (h /5)  5 + ( f / 4 )  4 > 0, P(z) has one real root, z0, and therefore, the real part of the 

curve F ,  F (R) ,  has one connected component  on [z0; cx~). Then one obtains 

(Jac(F))(~) ~ (R/77) 2 x (77/2) °. 

(b) If (h/5)  5 + ( f / 4 )  4 < 0 then P(z) has three simple roots: zl < z2 < z0, and so F (R)  

has two connected components on [Zl, z2] and [z0, ~ ) ;  therefore, 

(Jac(F))([~) ~ (~/77) 2 × (77/2) 2-1. 

The proposition is proved. [] 

Coro l la ry  3.1. Denote by ~'(F)(R) the real part of ~(F). 
(a) I f(h/5)  5 + ( f / 4 )  4 > 0 then 

R ,A(h,f ) = (R/7/) 2 \ ~'(/")(~).  

(b) / f ( h / 5 )  5 + ( f / 4 )  4 < 0 then 

,A(h,f ) R  ~ 1([~/7/) 2 x (77/2)} \ f f (F)(~) .  

Proof This result is a consequence of Theorem 2.1 and Proposition 3.1 (1). [] 

T h e o r e m  3.2. 

(a) If disc(P(z)) > 0 then .A~h,f ) is a cylinder. 

(b) l fdisc(P(z)) < 0 then fit R is a union of two cylinders. (h,f) 

Proof Ifdisc(P(z)) > 0, F (R)  has one connected component  on [z0; oc) which we denote 
F1. Let us also denote F1 (2) the symmetric product of  this component, i.e. 

F1 (2) = {PI + P 2  E F (2) : Pj = (uj, wj), uj e [z0;oo),  w 2 = P(uj), j---- 1,2} 

and Fo (2), the subset of  F (2) defined by 

Fo ( 2 ) = { P T S ( P )  E F (2): P = ( u , w ) ,  S ( P ) = ( f ,  tb), u E C \ N } .  

According to (1) and (3), we have 

Pi + Pj e r,(:) U ro (2) ~, ',. S(Pi + Pj) = Pi + Pj, 
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and according to (9) 

g ( ( ( P i  + Pj)) = ( (S (P i  + Pj)) = ( ( t~  + Pj). 

Then by the Abel -Jacobi  map 

J a c ( V ) ( ~ )  ~ Vl (2) U Vo (2). (10) 

Denote by: 

Ft,00 = {P + Pc, e /-(2) : p E r l  and Pc, -= r ( P )  or Pc, = P00} C P (2), 

D00(R) = ~'(&,00) = ( ( & ) .  

Then 

J a c ( r ) ( • )  N Doo(R) = ((F1) .  

The embedding 

( " F ~ Jac (F)  P w-> ( ( P )  

induces a homomorphism 

¢p " HI (F, Y) > H1 (Jac(F) ,  7/), 

which is in fact an isomorphism. 

As F1 represents a non-zero homology cycle on F.  ~" (F1) represents a non-zero homology 

cycle on Jac (F)  too. 

We conclude that if we remove this circle from the real toms J a c ( r ) ( ~ ) ,  we obtain a 

cylinder. 

I f d i s c ( P ( z )  < 0, then the real part of  the curve F, F ( R ) ,  has two connected components 

which we denote by r l  and / ' 2 ,  respectively, on [zo; oo) and [zl; z2]. 

According to Abel -Jacobi  map, formulas (1),(3), and the remark mentioned above we 

have 

g a c ( r ) ( ~ )  ~ (F1 x /-'2) -+- (rl(2) U F2 (2) U F(12)) , (11) 
Y Y 

TI  T2 

where 

/2  (2) ~--- {PI or- P2 G P (2) " Pj = (uj,  wj ) ,  uj E [Zl; 22], w 2 = P(u j ) ,  j = 1,2}. 

T1 and T2 have no common point because of: for z elz2,  zo[, if (u + v) ~ T1 then (z - 

u)(z  - v) < 0 a n d i f ( u + v )  e T2, (z - u)(z  - v) > 0 .  

Define: 

F1,00 = {P + Pc, c F (2) " P E F '  I and Pu = r ( P )  or Pc, = P00} C FI (2), 

/2,00 = { P + P 0 0  G F (2)" P c r 2 } C  & x /2 .  
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Sl 

Fig. 1. 

Doo(~) has two connected components without common point which are ff(Fl,oo) and 

~'(V2,oo): 

and 

Jac(F)(~) f3 Dcc(R) = ff(Fl.c¢) t2 ~(r2,c¢) 

T1 f3 Doo(IR) = ~'(F2,o¢) ---- ((F2),  T2 N Doo(R) = ¢(1"1,oo) = ~'(F1). 

As before, ((F1) and ¢ (F2) are two circles on Jac(F) not homologous to zero. 

We conclude that 

Jac(F)(R) \ ~'(F)(R) ~ {TI \ S l } t2 {T2 \ S 1 } 

is a union of  two cylinders. The theorem is proved. [] 

4. Topological bifurcations of  the varieties .At ~ (h,f) 

when (h, f )  E B. In this section we describe the topology of  singular level sets .A(h,f ), 
We recall that B is defined by 

B = {(h, f )  • R 2 : (h/5) 5 -4- ( f / 4 )  4 = 0}. 

We denote by Bl and B2 the connected components of  the set B corresponding, respectively, 
t o f  > 0 a n d f  < 0 ( F i g .  1). 

If  (ho, fo) • Bl then P(z) has a double real root zo = z2 and a simple root zl < zo; and 
for (ho, fo) ---- (0, 0), 0 is a root of  multiplicity 5. 

Let Ll and Lo denote the sets: 

L 0 = { O + P  : P • F1 \ P o o  0 = ( 0 , 0 )  } C /.(2), 

LI = {Po + P : P • Fl \ P ~  and Po ---- (zo; 0)} C F (2), 

where Fl is the only connected component of  the real part of  F when (ho, fo) • Bl t_J (0, 0) 
(see Figs. 2b.b and 4b.b). 
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a) 

\ 
a.) 

> 

Fig. 2a. 

Fig. 2b. 
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In the same way, if (ho, fo) c B2, P(z)  has a double real root zl = z2 and a simple root 
zo :> Zl. L2 will represent the set 

L 2 = { P I + P '  P c F I \ P ~  and Pl = ( z J ; 0 ) } C F  (2). 

/-'1 is also the connected component of  the curve F on [z0; oo) (See Fig. 3b.b). 

T h e o r e m  4.1. Let (ho, fo) ~ B and A~ho;jb ) be the corresponding singular level set. 

(a) l f  (ho, fo) c B! t3 {(0, 0)} then .A~ho;fo ) is a smooth real manifold, except in the points 

(ql, q2, Pl ,  P2)parameter ized by (uo, v) ~ L1 or Lo. 
R - l f (ho,  fo) c B1, A(ho;fo ) is homeomorphic to (S 1 v S 1) x R 1 where S 1 v S I is a 

union of  two circles with one common point (Fig. 2a.b). 
- I f  (ho, fo) = (0, 0), ,A s is a cylinder with singularities along the line ( (Lo)  

(ho; fo) 
(Fig. 4a.b). 

(b) l f  (ho, fo) ~ B2 then A~ho;fo ) is a union of  a cylinder and a line (Fig. 3a.b). 

Proof According to Theorem 2.1, in all the points (q l, q2, P l, P2) c .A~ho; jb ) which are not 

R is smooth. Now, we show that Lo, L 1 parameterized by (uo, vo) 6 Lk, k = 0, 1,2, .A(ho:fo ) 

and L2 parameterize the singular points of  ,A~ho,fo ). According to (1) the Hamiltonian H 
becomes 

H(u, v, Pu, Pv) = - u 4  - u3v  - u2v2  - uv3 - v4 q- - -  
p:. 

(u-v)  (u-v) '  

where Pu and Pv are the conjugate coordinates of  u, v. 
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(a) 

0 
Fig.  3a. (b) 

0 
(c) 

Fig. 3b. 

We also have 

( u -  v )H = - u  5 + v 5 + p 2 -  p2, 

and hence  

F = - u H  - u 5 + p2.  

The calcula t ion of  the gradient  of  F gives 

g r a d ( F )  = 

OH OF _ - H  - 5 u  4 - U - -  
OU 3U ' 

OF OH 

Ov - U - ~ v '  

OF OH 
3pu -- 2pu - u--,Opu 

OF OH 
- -  ' U  

3pv 3pv 

It is obvious  that if: 

P ' ( u )  = h + 5U 4 = 0 ,  Pu = l ( u  -- v)ti = 0, 

then 

(12) 

(13) 

g r a d ( F )  = - u  g r a d ( H ) .  

So, as in the points  of , ,4 ~ pa ramete r i zed  by (u0, v) 6 Lk, k = 0, 1, 2, we have 
(ho; fo) 

P ( u o ) = u  5 + h u O W  f = O ,  P ' ( u o ) = h W 5 u  4 = 0 ,  
(14) 

Pu = ½(u0 -- v)ti0 = 0, 
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(a) Fig. 4a. (ct 

/ r-,f I ,  o r /  , 

Fig. 4b. 

,17 

Z 
then 

grad(F) = -uo  grad(H)• 

It follows that, at these points, .A R is not smooth. (h0; f0) 
Let us consider the map # defined by 

/z F (2) \ F ~ R 
• ~4(h0; f0 ) 

u + v  ~ (ql,q2, Pt,P2),  

where ql,  q2, Pl and Pe are as in (1) and (3). 

I f  (h0,  f0 )  • B1 U {(0, 0)}, 

8~ ~(2) 
,,A[(ho;fo ) ~ {/-'1 (2) U l i )  } \ (F ' l .oo).  

For (ho, fo) • B2 according to the map/x,  

R A(ho.fo ) ~ {PI} x {El \ Po~} + {Fl (2) U if'0 (2)1 \ (E l ,oc )  - 

The theorem is proved• 
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[] 

Corol la ry  4.1. All bifurcations oJ'connected components of the invariant manifold .A(h f) 
are described in Fig. 1. 

Proof Bifurcation (i): The cylinder obtained in domain (I) collapses along the axial line 
(~" (L1), Theorem 4.1) before splitting into two cylinders. This bifurcation is described in 
Fig. 2a 

Bifurcation (ii): It is the "inverse" bifurcation of the following bifurcation: one of two 
cylinders contracts to this axial line (~" (L 1 ), Theorem 4.1) and "vanishes". This bifurcation 
is described in Fig. 3a 
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Bifurcation (iii): The cylinder collapses along the line ((Lo) before splitting into two 

cylinders. This bifurcation is represented by Fig. 4a. 

The corollary is proved. [] 
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